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Abstract
Physical states in quantum mechanics are rays in a Hilbert space. Projective
representations of a relativity group transform between the quantum physical
states that are in the admissible class. The physical observables of position,
time, energy and momentum are the Hermitian representation of the generators
of the algebra of the Weyl–Heisenberg group. We show that there is a
consistency condition that requires the relativity group to be a subgroup of the
group of automorphisms of the Weyl–Heisenberg algebra. This, together with
the requirement of the invariance of classical time, results in the inhomogeneous
Hamilton group. The Hamilton group is the relativity group for noninertial
frames in classical Hamilton’s mechanics. The projective representation of a
group is equivalent to unitary representations of the central extension of the
group. The central extension of the inhomogeneous Hamilton group and its
corresponding Casimir invariants are computed. One of the Casimir invariants
is a generalized spin that is invariant for noninertial states. It is the familiar
inertial Galilean spin with additional terms that may be compared to noninertial
experimental results.

PACS numbers: 02.20.Sv, 02.20.Uw, 03.65.Ca, 03.65.Fd

1. Introduction

A relativity group defines a universal transformation between physical states in an admissible
class. For special relativity, the inhomogeneous Lorentz group transforms inertial states that
have relative rotation, velocity and translations in position and time into one another. It
specifies how the measuring rods, clocks, momentum meters and energy meters of these states
are related. For small velocities, the Lorentz group is approximated by the Euclidean group
of Galilean relativity. In the quantum formulation, the physical states are realized as rays in a
Hilbert space and the group acts through a projective representation. This is equivalent to the
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unitary representation of the central extension, both algebraic and topological, of the relativity
group. The Poincaré group, that is the central extension of the inhomogeneous Lorentz group,
is simply its cover as it does not have an algebraic extension [1]. The Galilei group is the
central extension of the inhomogeneous Euclidean group that has a central mass generator as
an algebraic extension.

We review projective representations on physical states that are rays in a Hilbert space and
then show that this property of quantum mechanics leads directly to a consistency condition that
relativity groups must be subgroups of the group of automorphisms of the Weyl–Heisenberg
algebra. The Hamilton group is the subgroup of this group of automorphisms that leaves time
invariant. In a previous paper, it was shown that the Hamilton group is the relativity group for
noninertial frames in classical Hamilton’s mechanics [2]. The projective representations of the
inhomogeneous Hamilton group must be determined for its action on a quantum noninertial
state. We will show that the central extension of the Hamilton group admits three central
generators; I for the position-momentum and time–energy quantum commutation relations,
M as the mass generator and a new central element A with dimensions that are the reciprocal
of tension. The Galilei group is the subgroup of this group for inertial states and the mass
generator is the same. The Casimir invariants are calculated and this leads to a generalized
definition of Galilei spin invariant for noninertial physical states.

2. Projective representations of groups in quantum mechanics

Physical states are represented in quantum mechanics by rays � in a Hilbert space H. Rays
are equivalence classes of states |ψ〉 ∈ H that differ only in phase [3, 4]. Two states |ψ〉, |ψ̃〉
are in the same equivalence class � if

˜|ψ〉 = eiω|ψ〉, ω ∈ R . (1)

A symmetry of the physical system, described by a Lie group G with elements g, acts on
the rays through a projective representation π to transform one physical state into another

�̃ = π(g)�. (2)

The projective representation has the property π(g)π(g̃) = eiω(g,g̃)π(gg̃), ω(g, g̃) ∈ R.
As the rays are equivalence classes, � � eiω(g,g̃)� for any ω(g, g̃) ∈ R and therefore

π(g)π(g̃)� = π(gg̃)� . (3)

A class of observables is defined by lifting the projective representation to act on elements
X of the Lie algebra a(G) so that π ′(X) = (Teπ)(X) is an operator on H. An observable ˆ̃X
acting on the state �̃ is related to the observable X̂ acting on the state � by the projective
representation of g

π(g)X̂� = π(g)X̂π(g)−1π(g)� = π(g)X̂π(g)−1�̃ = π ′(X̃)�̃ = ˆ̃X�̃. (4)

Therefore

π ′(X̃) = π(g)π ′(X)π(g)−1 = π ′(gXg−1) (5)

for which a sufficient condition is1

X̃ = gXg−1. (6)

Finally, we note that if an operator X is an invariant such that ˆ̃X = X̂, then

X = gXg−1. (7)

1 If the representation is an isomorphism, then it is also necessary. Otherwise, equivalence is defined up to the
equivalence class defined by taking the quotient of the group with the kernel of the representation.
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A theorem in representation theory states that the projective representations π of a Lie
group G are equivalent to the unitary or anti-unitary2 representation � of the central extension
Ǧ 3 (see section 2.7 and appendix B of [1]). Therefore, the physical system may be studied
by characterizing the unitary irreducible representations � of the group Ǧ acting on a Hilbert
space H�. The Hilbert space is labeled by the unitary irreducible representation because it is
not given a priori, but rather is determined by the unitary representation.

The unitary representations act on the states |ψ〉 in the Hilbert space H�

˜|ψ〉 = �(g)|ψ〉, g ∈ Ǧ. (8)

The unitary representation � may be lifted to the tangent space to define the Hermitian
representation X̂ of the element of the algebra X

X̂ = �′(X) = Te�
′(X). (9)

Physical observables are characterized by the eigenvalues of the Hermitian representation
of the generators

X̂|ψ〉 = x|ψ〉, x ∈ R , (10)

and these generators transform as

�(g)X̂|ψ〉 = �(g)X̂�(g)−1 ˜|ψ〉 = ˆ̃X ˜|ψ〉. (11)

3. Quantum mechanics consistency condition with a relativity group

Measurements of the basic physical observables such as position, time, energy and momentum
depend on the relative physical state in which they are measured. For certain classes of physical
states, there is a relativity principal that defines a universal group relating the states. Examples
were given in the introduction: the inhomogeneous Lorentz group, and its central extension
the Poincaré group for the class of inertial quantum states in special relativistic quantum
mechanics [1] and the inhomogeneous Euclidean group and its central extension the Galilei
group for the class of inertial states in ‘nonrelativistic’ quantum mechanics4.

In quantum mechanics, the observables of position, time, energy and momentum are the
Hermitian representations of the algebra corresponding to the unitary representation of the
Weyl–Heisenberg group H(n + 1) [5].5 It is the real matrix Lie group

H(n + 1) � T (n) ⊗s T (n + 1), (12)

where T (n) � (Rn, +). That is, R
n considered to be a Lie group under addition. The

algebra has a basis {Zα} = {Pi,Qi, E, T } ∈ a(H(n + 1)), i, j, . . . = 1, . . . , n, and
α, β, . . . = 1, . . . , 2n + 2. The algebra has the familiar commutation relations

[Pi,Qj ] = δi,j I, [E, T ] = −I. (13)

The action of the group on the quantum states is given by the projective representation
π that is the unitary representation � of the central extension Ǧ. The Weyl–Heisenberg is

2 In what follows we will use only unitary with anti-unitary implicitly included.
3 If G � Ǧ, the group does not have any intrinsic projective representations and the projective representations are
just the unitary representations.
4 ‘Nonrelativistic’ means the approximation for velocities small relative to c. The ‘nonrelativistic’ has its own
relativity group that is the Galilei group in the inertial case.
5 This is also often called the Heisenberg group. It was Weyl who is generally credited with recognizing the
commutation relations was a Lie algebra and determining the group.
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a special case of the algebraic extension of the translation group T (2n + 2). If Xα are the
generators of the Abelian algebra of the translation group, then the central extension is

[Xα,Xβ ] = Mα,β, [Xγ ,Mα,β ] = 0, Mα,β = −Mβ,α . (14)

The Weyl–Heisenberg group is the special case Mα,β = ζα,βI , where ζα,β is the skew
symmetric symplectic metric (B.12). Now as discussed in appendix A, the central extension
of a group may be constrained if it is the subgroup of a larger group. We know that position,
time, energy and momentum are correctly realized in the quantum mechanics by the unitary
representation of the Weyl–Heisenberg group and the associated Hermitian representation of
its algebra and so must be constrained in this manner. Before turning to what this larger group
is, we briefly review this familiar Hermitian representation.

The Mackey theorems for semidirect products (or the Stone von Neumann6 theorem) may
be used to compute the unitary irreducible representations. The results are well known. The
representations are labeled by the eigenvalue of the single Casimir I, �′(I )|ψ〉 = c|ψ〉. The
physical cases is c = h̄ for which the Hilbert space is H � L2(Rn+1, C). If we choose a basis
|q, t〉 that diagonalizes Q̂i and T̂ ,

〈q, t |Q̂i |ψ〉 = qiψ(q, t), 〈q, t |T̂ |ψ〉 = −tψ(q, t),

〈q, t |P̂i |ψ〉 = ih̄
∂

∂qi
ψ(q, t), 〈q, t |Ê|ψ〉 = ih̄

∂

∂t
ψ(q, t),

〈q, t |Î |ψ〉 = h̄ψ(q, t).

(15)

The representations satisfy the quantum commutation relations7

[P̂i , Q̂j ] = ih̄δi,j , [Ê, T̂ ] = −ih̄. (16)

Of course, one could equally well choose the momentum representation with basis |p, t〉 that
diagonalizes P̂i and T̂ [6], or for that matter, a basis |p, e〉 that diagonalizes P̂i , Ê or |q, e〉
that diagonalizes Q̂i, Ê.

We now return to the question of the larger group constraining the algebraic central
extension. A basic consistency condition exists between the physical observables belonging
to the algebra of the Weyl–Heisenberg group and the relativity group that acts on them.
We consider the class of linear relativity groups that transform one state into another so
that in both states, position, time, energy and momentum are represented by the Hermitian
representation of the Weyl–Heisenberg algebra. Each observers’ specific measurements of
position, time, energy and momentum may differ, due to contractions and dilations of the
relativity transformation. However, in any physical state that they are measured, they define a
Weyl–Heisenberg algebra. Then, from (11), for g ∈ Ǧ, we have

�(g)Ẑα|ψ〉 = �(g)Ẑα�(g)−1�(g)|ψ〉 = Ẑ′
α|ψ ′〉. (17)

Therefore, as in (4)–(6), it follows that for a faithful representation

Ẑ′
α = �′(Z′

α) = �(g)Ẑα�(g)−1 = �′(gZg−1) (18)

and

Z′
α = gZg−1, (19)

where we require that both Z′
α, Zα ∈ a(H(n + 1)). This means that g is an element of the

automorphism group of the Heisenberg algebra, AutH and therefore the relativity group G
6 The Stone von Neumann theorem is specific to the Weyl–Heisenberg group whereas the Mackey theorems apply
to a general class of semidirect product groups.
7 The i is inserted in the exponential relating group and algebra so that the algebra is represented by Hermitian rather
than anti-Hermitian operators and this results in its appearance in the commutation relations (see [15]).
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must be a subgroup, G ⊂ AutH
8. The automorphism group is given in [7] and in appendix B

(B.8)–(B.11),

AutH � A ⊗s Z2 ⊗s HSp(2n + 2), (20)

where

HSp(2n + 2) � Sp(2n + 2) ⊗s H(n + 1). (21)

Therefore we have the result that, to be consistent with quantum mechanics in which
position, time, energy, and momentum are the Hermitian representation of the Weyl–
Heisenberg group, the relativity group must be a subgroup of the automorphism group defined
in (20)–(21).

This consistency may also be argued in the other direction. Suppose the position,
time, energy and momentum degrees of freedom are described by the generators {Zα} =
{Pi,Qi, E, T } that span the algebra of T (2n + 2). This is the expected classical description
where the extended phase space is R

2n+2. The generators satisfy the commutation relations
[Zα,Zβ ] = 0. The quantum operators are the projective representations of the generators,
π ′(Zα), with Zα ∈ a(T (2n + 2)). The projective representation is equivalent to the unitary
representation of the central extension of the group, �′(Zα) with Xα ∈ a(Ť (2n + 2)).
Considered as a group by itself, the algebraic extension of the translation group is given
in (14).

Suppose that a relativity group G relates the position, time, energy and momentum
Hermitian operators in different physical states. The translation generators may be considered
to be a subgroup of the inhomogeneous group IG = G ⊗s T (2n + 2). The group acting on the
quantum states is the Hermitian representation of the algebra of the central extension IǦ. If
we assume G � Sp(2n + 2) then

IG � ISp(2n + 2) � Sp(2n + 2) ⊗s T (2n + 2). (22)

The central extension of the inhomogeneous symplectic group is shown in appendix B (A.4)–
(A.7) to be IŠp(2n + 2) = HSp(2n + 2) defined in (21). The central elements for a
central extension of the translation group (14) have been constrained by its embedding in the
inhomogeneous symplectic group to be Mα,β = ζα,βI .

Therefore, in this case, the relativity group restricts the admissible central extension of
the translation group so that it is precisely the Weyl–Heisenberg group. This turns out to be
also true for certain subgroups of the symplectic group Sp(2n + 2) that we shall turn to next.
The system is quantized simply through the projective representation that is required because
physical states are represented by rays in the Hilbert space.

To summarize, consistency of the relativity group and quantum mechanics requires that
the relativity group is a subgroup of the group of automorphisms of the Weyl–Heisenberg
algebra of the basic physical observables of position, time, energy and momentum.

On the other hand, we can start by assuming a relativity group that is the symplectic
group, or certain subgroups, and that physical states are represented by rays in the Hilbert
space with the corresponding projective representations of the group. Then it directly follows
that the physical quantities of time, position, energy and momentum, represented classically
by translation generators, are the Hermitian representations of the Weyl–Heisenberg algebra
in the quantum formulation. The quantization is directly a result of the states being rays in a
Hilbert space.

8 If the observables are the Hermitian representation of the element of the algebra of another group, then the same
arguments hold and the relativity group must be a subgroup of the automorphism group of that algebra.
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4. Hamilton relativity group: invariance of time

Nonrelativistic quantum mechanics has the fundamental assumption that time is an invariant
for inertial and noninertial physical states. All observers’ clocks tick at the same rate. Time,
position, energy and momentum are represented by the generators Zα ∈ a(H(n + 1)), where
{Zα} = {Pi,Qi, E, T }. The requirement that a relativity group G leave T invariant is, for all
g ∈ G,

gT g−1 = T . (23)

This condition, together with the requirements that the group is a subgroup of AutH, requires
that the g be elements of the group

HSp(n) � Z2 ⊗s Sp(2n) ⊗s H(n). (24)

This is established in appendix B, (B.12), (B.13) with the matrix realization of HSp(n) given
in (B.1).

This identity is also established in [2] and in that reference it is shown that the
diffeomorphisms of the extended phase space P � R

2n+2 into itself whose Jacobians are
elements of the group HSp(n) are Hamilton’s equations. The Weyl–Heisenberg subgroup of
(24) is parameterized by the relative rate of change with time of position vi , momentum f i

and energy r. That is velocity, force and power. Power is the central element. The generators
of velocity are Gi , force Fi and power R.9 A general element of this H(n) algebra is

viGi + f iFi + rR. (25)

The full classical relativity group including the time, position, energy and momentum
generators is the group

IHSp(n) � HSp(n) ⊗s T (2n + 2). (26)

For the action on the quantum physical states, we must determine the unitary representation
of the central extension. The most general relativity group that has time as an invariant acting
on a quantum theory is therefore given by the unitary representations of IȞSp(n). The
method for computing central extensions is reviewed in appendix A. It can be shown that
the algebraic central extension requires the addition of the central element I that turns the
translation group T (2n + 2) in (24) into H(n + 1).

A further simplification is possible that makes the physical meaning clearer by requiring
invariance of the length δi,jQiQj in the inertial rest frame. This eliminates substantial
mathematical complexity associated with non-orthonormal frames and enables the physical
meaning to be more transparent. The inertial rest frame action of the group HSp(n) in (24)
has the parameters vi = f i = r = 0 (see (B.1)) and so we need only consider the symplectic
subgroup. Thus for h ∈ Sp(2n)

δi,jQiQj = hδi,jQiQjh
−1. (27)

The required subgroup is O(n) ⊂ Sp(2n) (see [2] and appendix B) and it maps an
orthonormal basis {Qi} into an orthonormal basis {Q̃i}. This defines the Hamilton group

Ha(n) = Z2 ⊗s O(n) ⊗s H(n) ⊂ Sp(2n) ⊗s H(n), (28)

that is the relativity group for transformations between frames in Hamilton’s mechanics where
the inertial rest position frames are orthonormal.

Again, the quantum theory requires us to consider the central extension of

IHa(n) � Ha(n) ⊗s T (2n + 2). (29)

9 Note that the units of these are 1/velocity, 1/force and 1/power respectively.
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As we will show in the following section, this central extension is of the form10

QHa(n) = IȞa(n) � Ha(n) ⊗s (T (2) ⊗ H(n + 1))

� (Z2 ⊗ Z2) ⊗s SO(n) ⊗s H(n) ⊗s (T (2) ⊗ H(n + 1)). (30)

Again, the central extension of the translation group in (26) is restricted by the inhomogeneous
Hamilton relativity group precisely so that it defines the Weyl–Heisenberg subgroup required
for the quantum realization of position, time, energy and momentum as the Hermitian
realization of Heisenberg generators. We will show in the following section that it has
three algebraic central generators. Like the Galilei group, it has a nontrivial algebraic central
extension that is the mass generator M and furthermore has a second central element A that
has the physical dimensions that are the reciprocal of tension (length/force) in addition to the
central element I that appears in the H(n+1) subgroup . M and A are generators of the algebra
of the T (2) translation subgroup that appears in (30).

5. Central extension of the inhomogeneous Hamilton algebra

The homogeneous and inhomogeneous Hamilton and Euclidean groups as well as the Weyl–
Heisenberg group are real matrix Lie groups. The matrix realization of these groups is
given in appendix B. The Lie algebras can therefore be directly computed from these matrix
realizations. The resulting nonzero commutation relations of the algebra of Ha(n) are

[Ji,j , Jk,l] = Jj,kδi,l + Ji,lδj,k − Ji,kδj,l − Jj,lδi,k,

[Ji,j ,Gk] = Gjδi,k − Giδj,k,

[Ji,j , Fk] = Fiδj,k − Fjδi,k,

[Gi, Fk] = Rδi,k.

(31)

The inhomogeneous Hamilton group IHa(n) requires the additional nonzero commutation
relations:

[Ji,j ,Qk] = −Qjδi,k + Qiδj,k, [Ji,j , Pk] = −Pjδi,k + Piδj,k,

[Gi,Qk] = δi,kT , [Fi, Pk] = δi,kT ,

[E,Gi] = −Pi, [E,Fi] = Qi,

[E,R] = 2T .

(32)

That T is a central element as expected is clear from the structure of the commutation
relations. All physical states related by group transformations generated by this algebra leave
T invariant. All these states have the same definition of time. A general element of the algebra
is

Z = αi,j Ji,j + viGi + f iFi + rR + qiPi + tE + piQi + eT . (33)

The αi,j are the n(n−1)

2 rotation angles, vi velocity, f i force, r power, qi position, t time, pi

momentum and e energy. Correspondingly the generators have the dimensions such that Z is
dimensionless.

5.1. Galilei group

Before continuing with the Hamilton group, we briefly review the inertial special case of the
Hamilton group that is the familiar Euclidean group of Galilean relativity [2]. The Galilei

10 Z2 ⊗ Z2 is the four element parity, time reversal discrete group.
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group is the central extension of the inhomogeneous Euclidean group IE(n)

IE(n) � E(n) ⊗s T (n + 1) = SO(n) ⊗s T (n) ⊗s T (n + 1). (34)

The algebra of IE(n) ⊂ IHa(n) is spanned by the generators {Ji,j ,Gi, Pi, E} that are a
subset of the full set of generators in (31), (32),

[Ji,j , Jk,l] = Jj,kδi,l + Ji,lδj,k − Ji,kδj,l − Jj,lδi,k,

[Ji,j ,Gk] = Gjδi,k − Giδj,k,

[Ji,j , Pk] = −Pjδi,k + Piδj,k,

[E,Gi] = −Pi.

(35)

The central extension Ga(n) � IĚ(n) may be directly computed using the method in
appendix A. It is well known the algebraic central extension is the single generator M with the
associated additional nonzero commutation relation

[Gi, Pk] = δi,kM. (36)

Note that M has the dimensions of mass and has a consistent physical interpretation as mass.
The Galilei group may be written as

Ga(n) = (T (1) ⊗ SO(n)) ⊗s H(n), (37)

where E is the generator of the algebra of the T (1) group, Ji,j are the generators of the algebra
of SO(n) and {Gi, P i,M} generate the Weyl–Heisenberg group H(n) with M the central
element. Of course, in the physical case n = 3,SO(3) = SU(2).

5.2. Central extension of the inhomogeneous Hamilton group

Returning to the central extension IȞa(n) of the Hamilton group, direct symbolic Lie algebra
computation using shape Mathematica with the method described in appendix B results in the
addition of the central elements

[Pi,Qk] = δi,kI, [E, T ] = −I, [Gi, Pk] = δi,kM, [Fi,Qk] = δi,kA, (38)

to the Hamilton algebra defined in (31), (32). The three new central elements {M,A, I },
(Ne = 3), result in the following terms being added to a general element of the algebra given
in (33)

Z = αi,j Ji,j + viGi + f iFi + rR + qiPi + tE + piQi + eT + aA + mM + ιI. (39)

The central extension condition for M in (38) is identical to the mass central extension
in the Galilei group (36) and is precisely the condition for Ga(n) to be the inertial subgroup
of QHa(n). The central extension I, with dimensions of action, is precisely the condition
for the unitary representation to yield the usual Heisenberg commutation relations. The final
extension A is new and has the dimensions that is the reciprocal of tension, length/force.
Therefore the parameter a has dimensions of tension, m of reciprocal mass and ι of reciprocal
action.

6. Casimir invariants

Casimir invariant operators Cα, α = 1, . . . , Nc are polynomials in the enveloping algebra
that commute with all the generators of the algebra of the group in question [Cα,ZA] = 0.
ZA ∈ a(G), A = 1, . . . , Ng and Ng is the dimension of G. α = 1, . . . , Nc where Nc is
the number of Casimir invariants. The eigenvalues να of the Hermitian representations of
the Casimir invariants Ĉα|ψ〉 = να|ψ〉, να ∈ R are invariants for all physical states related

8
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by the relativity group G. These invariants typically label irreducible unitary representations
(but not always completely) and represent fundamental physical quantities. For example, in
both the Galilei and the Poincaré relativity group, mass and spin are the eigenvalues of the
representations of the corresponding Casimir invariants.

The number Nc of Casimir invariants may be computed directly from a theorem that states
that it is Nc = Ng − Nr . Nr is the rank of the Ng × Ng matrix zAcC

A,B that is the adjoint
representation of the algebra [ZA,ZB] = cC

A,BZC [8]. A general element of the algebra
is Z = zAZA. The Casimirs can be found by constructing a general element pl(ZA) of the
enveloping algebra up to a give order of polynomial in the generators with general coefficients.
Setting [pl(ZA), ZA] = 0 creates a linear set of equations in the coefficients that can be solved
to determine the Casimir invariant operators. A central element is a polynomial of order
1 and so the first Ne Casimir invariants are the central elements. This is a conceptually a
simple calculation but is best carried out using a symbolic computation package written in
Mathematica [9] as the number of bracket computations and the linear equations is large for
the number of algebras in question.

The results for the dimensions are given in the following table. Of course, while Ng may
be determined for general n and Ne is independent of n, the Nc must be computed from the
rank of the symbolic matrix on a case by case basis. For the remainder of this section we will
restrict our attention to n � 3

Ng Ne Nc(n = 1) Nc(n = 2) Nc(n = 3)

Ga(n) : 1
2 (n2 + 3n + 4) 1 2 3 3

IȞa(n) : 1
2 (n2 + 7n + 12) 3 4 5 5

(40)

Before considering the group QHa(n) = IȞa(n) we briefly review the well-known
results from the Galilei group, Ga(n) � IĚ(n). For n � 3, there are three Casimir invariants,
one of which is the central element M,

C1 = M, C2 = 2ME − PiPi,

C3 = M2Si,j Si,j , Si,j = Ji,j − 1

M
(GjPi − GiPj ).

(41)

Note that C3 is identically zero for n = 1. From (40), it follows that these are the complete set
of Casimir invariants for Ga(n) for n � 3. For clearer physical insight, note that the Casimir
invariants C2 and C3 can be written as the energy and spin of an inertial (free) particle

E − E◦ = 1

2M
PiPi, S2 = Si,j Si,j where E◦ = 1

2M
C2. (42)

The Casimir invariants of QHa(n) may be directly computed using the same method. For
n � 3, there are five Casimir invariants, three of which are the central elements I,M,A,

C1 = I, C2 = M, C3 = A,

C4 = T T − IR,

C5 = C2Bi,jBi,j ,

(43)

where
C = C2C3 + C4 = −AM + T 2 − IR,

Bi,j = Ji,j +
1

C
Di,j .

(44)

C is a Casimir invariant as any polynomial combinations of a Casimir is a Casimir and the
Di,j are given by

Di,j = AD1
i,j + MD2

i,j + RD3
i,j + ID4

i,j + T
(
D5

i,j + D6
i,j

)
, (45)
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where
D1

i,j = GjPi − GiPj , D2
i,j = FjQi − FiQj ,

D3
i,j = PiQj − PjQi, D4

i,j = FiGj − FjGi,

D5
i,j = FiPj − FjPi, D6

i,j = GiQj − GjQi.

(46)

Bi,j vanishes for n = 1. It is a straightforward computation using the Lie algebra relations
(31), (32), (38) to verify that these are invariant. From (40), it follows that these are the
complete set of Casimir invariants for QHa(n) for n � 3. Note that Bi,j may also be written
as Bi,j = Si,j + 1

C
D̃i,j , where Si,j is the Galilean spin defined in (41) and as 1

M
+ A

C
= C4

C

D̃i,j = C4D
1
i,j + MD2

i,j + RD3
i,j + ID4

i,j + T
(
D5

i,j + D6
i,j

)
. (47)

The eigenvalues of the Casimirs in the unitary representation usually label irreducible
representations. In a representation where the eigenvalue of C goes to zero, the Di,j term will
be negligible and the spin reduces to the usual Galilean spin limC→ 0 Bi,j = Si,j . A sufficient
condition for this is C3 = A → 0 and C4 → 0. As A = 0 means that the tension 1/A is
infinite.

7. Discussion

Physical states in quantum mechanics are represented by rays in a Hilbert space. Quantum
mechanics realizes position, time, momentum and energy as the Hermitian representation of
the generators Ẑα of the algebra of the Weyl–Heisenberg group. These generators acting on
a state, Ẑα|ψ〉, are transformed by the unitary representations of a relativity group to define
generators acting on the transformed state, ˆ̃Zα

˜|ψ〉. In order for the transformed generators
to also be generators of the Weyl–Heisenberg group, the relativity group must be a subgroup
of the group of automorphisms of the Weyl–Heisenberg algebra. If the relativity group does
not have this property, then the position, time, momentum and energy degrees of freedom
would not satisfy the Heisenberg commutation relations in the transformed state, as given
in (16). This provides a basic consistency condition between the relativity group and the
Weyl–Heisenberg group of quantum mechanics.

Folland has proven that the automorphism group of the Weyl–Heisenberg algebra (and
group) is the group HSp(2n+2) together with a conformal scaling group A and a two element
discrete group Z2 that reverses the sign of time and energy. The Weyl–Heisenberg subgroup
of HSp(2n + 2) are the inner automorphisms. The constraint on the continuous homogeneous
relativity group is that it is a subgroup of the symplectic subgroup and conformal scaling
group. This shows the very deep connection between the Weyl–Heisenberg group and the
symplectic structure. The symplectic structure does not need to be postulated shape a priori
but is simply required by this consistency with quantum mechanics.

Invariance of classical time results in the HSp(2n) homogeneous relativity group that is
a subgroup of Sp(2n + 2). We have previously shown that the requirement that Jacobians of
diffeomorphisms of classical extended phase space into itself be elements of this group are
Hamilton’s equations. While this is the most general group, a considerable amount of the
mathematical generality of this group is to accommodate frames that are not orthonormal in
the inertial rest frame. Requiring invariance of length in the inertial rest frame reduces this
group to the physical Hamilton group Ha(n) [2].

The central generators of mass, fundamental to classical mechanics, and the I required
to give the Heisenberg commutation relations in the representation appear automatically as a
result of the projective representations that are required because the physical quantum states
are rays in a Hilbert space.

10
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Projective representations of this group act on quantum states that are generally noninertial.
Here we get our first surprise. In the quantum realization, time is not an invariant. Rather,
taking the representation of (43) we obtain an expression of the form acting on a quantum
state

T 2|ψ〉 = (τ 2 + h̄R)|ψ〉, (48)

where τ 2 is the eigenvalue of the Casimir C4.
The next interesting fact is that there is no Casimir operator (such as C2 for the Galilei

group) that involves the energy generator. However, when one recalls from basic classical
mechanics that noninertial frames do not conserve energy, this is not so surprising and to be
expected. What is surprising is that there is a natural generalization of spin that is invariant
in all noninertial physical states. All observers, inertial and noninertial, calculate the same
values for the eigenvalues of the Casimir C5 that may be expressed as Galilei spin with
additional terms (44), (45). This provides a possibility of testing this theory by studying spin
in noninertial states in ‘nonrelativistic’ quantum mechanics.

Finally, an even more surprising result is the appearance of a new central generator A.
The parameter a for the term aA in the general term for the algebra (39) has the dimensions
of tension. This generator shows up in the algebra in as fundamental a manner as the mass
and I generator. Both of those are rather basic to physics and so a critical test of these ideas is
a further physical understanding of A. Note A is reciprocally dual to M in the sense of Born
[10]. This reciprocal symmetry underlies the material presented.

As noted, the eigenvalues of the Hermitian representations of the Casimir invariants for
the unitary representations of the group typically label the irreducible representations. There
will probably be a class of irreducible representations with states where Â|ψ〉 = 0. In these
states tension is infinite. Tension seems to play a basic role in string theory and so it is
intriguing that a tension term shows up here.

The unitary representations of the group QHa(n), and many of the other groups in this
paper, have a rich semidirect product structure. The methods of Mackey for determining
the unitary representations of semidirect product groups can be used to determine the
representations [11]. This will be undertaken in a subsequent paper to complete the quantum
description of this relativity group.

The same methods may be generalized to relativity groups with other invariants. For
example, instead of the invariant T, we could have the Minkowski invariant T 2 − 1

c2 Q
2

appropriate for special relativity or the Born line element T 2 − 1
c2 Q

2 − 1
b2 P

2 + 1
c2b2 E

2

appropriate for reciprocal relativity [12].11 In particular, one would conjecture a generalization
of the standard spin in relativistic quantum mechanics that involves additional terms similar
to what has been shown here in the classical context required for noninertial frames to provide
a critical test.
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Appendix A. Central extensions

The central extension Ǧ of a group G is defined by the short exact sequence

1 → A → Ǧ → G → 1,

11 We note that QHa(n) is the b, c → ∞ limit of the quaplectic group that appears in reciprocal relativity.
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where A is an Abelian group in the center of Ǧ that is the extension. This induces a central
extension for the algebra of Ǧ corresponding to the algebra of A. The set of isomorphism
classes of the central extension of G by A is in one-to-one correspondence with the second
cohomology group H 2(G,A). The methods of algebraic topology that may be used to
determine this cohomology group are described in [13].

Alternatively, a central extension Ǧ is the universal cover of the group whose algebra is
the central extension of the algebra of G. The central extension of the algebra is explicitly
constructed as the most general central extension satisfying the Jacobi identities for the algebra
as described in [1]. A nontrivial first homotopy group for the group G results in the topological
extension that is the first homotopy group in the construction of the universal cover. We refer
to the extension of the algebra as the algebraic extension and the cover as the topological
extension. This indirectly results in the cohomology group H 2(G,A) due to the equivalence
noted. This method of determining the algebraic extension is tractable by creating a set of
general Lie algebra evaluation rules in Mathematica [9].

Consider a general Lie algebra with basis Zα ∈ a(G), α, β, . . . = 1, . . . , Ng , with Ng the
dimension of the group and algebra, satisfying commutation relations

[Zα,Zβ ] = c
γ

α,βZγ . (A.1)

A general element of the algebra is Z = zαZα with zα ∈ R. The central extension of the
algebra is defined by the maximal addition of central elements Mα,β to the algebra that are
consistent with the Jacobi identities. First, construct the maximal set of candidate extensions
as

[Zα,Zβ ] = c
γ

α,βZγ + Mα,β, [Zγ ,Mα,β ] = 0. (A.2)

The problem of determining the central extension is to find the most general set of Mα,β

for which the Jacobi identities for the set of generators are satisfied

[Zα, [Zβ,Zγ ]] + [Zβ, [Zγ ], Zα]] = [Zγ , [Zα,Zβ ]] = 0. (A.3)

Clearly the combination Mα,β = c
γ

α,βMγ is always a solution constituting to translating each

generator by a corresponding central element, Žα = Zα + Mα . These are discarded as trivial.
The remaining solutions define the central extension.

Consider a Lie group G with a candidate central extension of its algebra given by (A.2).
The number of Jacobi identities can be dramatically reduced by examining the properties of
the central extensions for subsets of the generators {Za} that define subalgebras. A necessary
condition that the full algebra admits a central extension is that the subalgebra also admit
the extension. If the subalgebra does not have an extension, we can immediately set the
corresponding set of candidate central elements to zero {Ma,b = 0}. The embedding in the
larger group in these cases blocks the extension from being an extension of the full group.

It is well known that the following groups do not have an algebraic central extension:
O(n),O(1, n),Sp(2n), E(n), E(1, n). (See, for example, [1] for a detailed analysis of
E(1, n).) E(n) = SO(n) ⊗s T (n) provides an immediate example where the subgroup
T (n) has a central extension that is blocked by the fact that it is a subgroup of the semidirect
product with SO(n) as the homogeneous group.

The algebraic central extension of the inhomogeneous symplectic group may be calculated
in the same manner. Suppose {Wa,b, Ya} are the generators of the algebra of the inhomogeneous
symplectic group, ISp(2n + 2) � Sp(2n + 2) ⊗s T (2n). The nonzero commutation relations
are

[Wα,β,Wκ,δ] = ζβ,κWα,δ + ζα,κWβ,δ + ζβ,δWα,κ + ζα,δWβ,κ , (A.4)

[Wα,β, Yκ ] = ζβ,κYκ + ζα,κYκ, (A.5)

12
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where α, β, . . . = 1, . . . , 2n + 2. Immediately M
W,W
α,β,κ,δ = 0 as Sp(2n + 2) does not admit

a central extension. It is then simply a matter of introducing the candidate extensions{
M

Y,Y
α,β ,M

W,Y
α,β,κ

} = {Mα,β,Mα,β,κ} and checking the Jacobi relations when they are added
to the above generators and the implicit relation

[Yα, Yβ] = Mα,β. (A.6)

The essential Jacobi relations from (A.3) are

{Yα,Wκ,δ,Wγ,ε} = ζε,κMγ,δ,α + ζα,κMγ,ε,δ + ζα,δMγ,ε,κ

− ζδ,εMγ,κ,α + ζγ,κMδ,ε,α − ζα,εMδ,κ,γ − ζα,γ Mδ,κ,ε + ζγ,δMε,κ,α,

{Yα, Yκ,Wγ,ε} = −Mκ,εζα,γ − Mκ,γ ζα,ε − Mα,εζγ,κ − Mα,γ ζε,κ . (A.7)

It can be verified that Mγ,δ,α only has trivial solutions whereas Mα,β = ζα,βI where I is
a central element is a nontrivial solution. Thus, the algebraic central extension is the group
HSp(n) � Sp(2n) ⊗s H(n) as claimed.

As another example, this method can be immediately used to reduce the number of central
generators that need to be checked with the Jacobi conditions for the Galilei group. Here the
candidate central elements (with superscripts labeling the commutators to which they apply)
are

{
M

J,J
i,j,k,l ,M

J,G
i,j,k,M

J,P
i,j,k,M

J,E
i,j ,M

G,E
i ,M

P,E
i ,M

G,P
i,j

}
. As {Ji,j ,Gi} and {Ji,j , Pi} are the

generators of Euclidean subalgebras, we can immediately set MJ,J
i,j,k,l = 0,M

J,G
i,j,k = 0,M

J,P
i,j,k =

0 significantly reducing the number of Jacobi identities that need to be calculated.
The same is true of the inhomogeneous Hamilton group where the relations

{
M

J,F
i,j,k,M

J,Q
i,j,k

}
may also be set to zero as they are the generators of Euclidean subalgebras. The remainder
need to be checked directly through the Jacobi identities that is best undertaken using the
symbolic computation capabilities of Mathematica.

Appendix B. Matrix realizations of the groups

The homogeneous and inhomogeneous Hamilton and Euclidean groups and the Weyl–
Heisenberg groups may be realized as matrix groups that are subgroups of GL(2n + 2, R).
Elements of this group are nonsingular (2n + 2) × (2n + 2) real matrices.

The group element �◦(ε, A,w, ι) ∈ HSp(2n) and Hamilton group �◦(ε, R, v, f, ι) ∈
Ha(n) are matrix subgroups of GL(2n + 2, R) [2, 14] with the form

�◦ =
⎛
⎝ A 0 w

−t wζ ◦A ε r

0 0 ε

⎞
⎠, �◦ =

⎛
⎜⎜⎝

R 0 0 f

0 R 0 v
tvR −t f R ε r

0 0 0 ε

⎞
⎟⎟⎠, (B.1)

where r ∈ R, ε = ±1 and w ∈ R
2n, ε = ±1, A ∈ Sp(2n) realized by 2n × 2n matrices in �◦

and f, v ∈ R
n, R ∈ O(n) realized by n × n matrices in �◦. The symplectic metric is

ζ ◦ =
(

0 In

−In 0

)
, (B.2)

where In is the n × n unit matrix. The subgroup chain,

H(n) ⊂ Ha(n) ⊂ HSp(2n) ⊂ GL(2n + 2, R), (B.3)

leads to the identifications of w = (f, v) and also note that O(n) ⊂ Sp(2n).
Elements of the Weyl–Heisenberg group are given by either ϒ(w, ι) = �◦(1, I2n, w, ι)

or ϒ(v, f, ι) = �◦(1, In, v, f, ι). The group multiplication, inverses and automorphisms may
be computed simply through matrix multiplication and inverse. The basis of the Lie algebra
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is given by differentiating the matrices by the parameters and evaluating at the identity. The
Lie algebra structure relations are computed directly by matrix multiplication to establish the
abstract relations in (31).

Likewise, for the inhomogeneous group, we have the inclusion chain

IE(n) ⊂ IHa(n) ⊂ IHSp(2n + 2) ⊂ IGL(2n + 2, R) ⊂ GL(2n + 3, R). (B.4)

The corresponding matrix representations of the inhomogeneous groups �(ε,A,w, r, z, e, ι) ∈
IHSp(2n + 2) and �(ε,R, v, f, r, q, p, e, t) ∈ IHa(n) are

� =

⎛
⎜⎜⎝

A 0 w z

−twζ ◦A ε r e

0 0 ε t

0 0 0 1

⎞
⎟⎟⎠ , � =

⎛
⎜⎜⎜⎜⎝

R 0 0 f p

0 R 0 v q
tvR −t f R ε r e

0 0 0 ε t

0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ . (B.5)

In these expressions z ∈ R
2n, p, q ∈ R

n and there is the identification z = (p, q).
Elements of the form �(ε,R, v, 0, 0, p, 0, e, 0) define an inhomogeneous Euclidean subgroup
IE(n), the central extension of which is the Galilei group.

Finally, HSp(n) � Sp(2n + 2) ⊗s H(n) is a matrix subgroup of GL(2n + 4, R)

�(ε,A,w, ι, z, e, t) =

⎛
⎜⎜⎜⎜⎝

A 0 w 0 z

−twζ ◦A ε ι 0 e

0 0 ε 0 t

−t zζ ◦A −t e 1 ι

0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ . (B.6)

The central extension of a matrix group is not necessarily a matrix group [15]. It is not been
established whether the extensions ȞSp(n) and QHa(n) are matrix groups.

B.1. Automorphisms of the Weyl–Heisenberg group

AutH that is given by (20) is proven by Folland. (See page 20 of [7].) We provide here the
matrix representation and group composition law and explicitly compute the automorphisms.
Using the definition ϒ(w, ι) = �(I2n, w, ι) and (B.1) the Weyl–Heisenberg group H(n)

composition law is the expected

ϒ(w′, ι′) · ϒ(w, ι) = ϒ(w + w′, ι + ι′ + tw′ζ ◦w), ϒ(w, ι)−1 = ϒ(−w,−ι). (B.7)

Elements of the linear automorphism groupAutH may be represented by (2n+2)×(2n+2)

matrices � that satisfy �ϒ(w′, ι′)�−1 = ϒ(w′′, ι′′), where ϒ(w, ι) are realized by
(2n + 2) × (2n + 2) matrices (B.1). Direct computation then shows that the most general
element with this property is

�(ε, a,A,w, r) =
⎛
⎝ aA 0 w

−twζ ◦A εa2 r

0 0 ε

⎞
⎠ , (B.8)

where A ∈ Sp(2n),w ∈ R
2n, a, r ∈ R, ε = ±1 and ζ ◦ is the symplectic metric defined in

(B.2). The group multiplication and inverse are

�(ε′′, a′′, A′′, w′′, r ′′) = �(ε, a,A,w, r)�(ε′, a′, A′, w′, r ′)
= �(εε′, aa′, AA′, ε′w + aAw′, ε′r + εa2r ′ −t wζ ◦Aw′), (B.9)

�(ε, a,A,w, r)−1 = �(ε, a−1, a−1A−1,−εa−1A−1w,−a−2r).
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It follows directly that the automorphisms are

ϒ(w′′, r ′′) = �(ε′, a′, A′, w′, r ′)ϒ(w, r)�(ε′, a′, A′, w′, r ′)−1

= ϒ(ε′a′A′w, a′2r − ε′tw′ζA′w + a′ t (A′w)ζw′). (B.10)

The central extension of the automorphism group of the Weyl–Heisenberg group is

ǍutH � AutH = (A ⊗ Z2) ⊗s HSp(2n + 2), (B.11)

where HSp(2n + 2) � Sp(2n + 2) ⊗s H(n + 1). Folland also shows that the automorphism
group for the Weyl–Heisenberg algebra and group are the same [7]. Note that the central
generator I of the algebra of H(n + 1) is also a central element of ǍutH.

B.2. Invariance of time

The subgroup G of the homogeneous subgroup of AutH, g ∈ G ⊂ A ⊗s Z2 ⊗s Sp(2n + 2),
such that gT g−1 = T is established directly through a matrix realization of the symplectic
group and Weyl–Heisenberg algebra. First, note that a matrix S ∈ Sp(2n + 2) leaves invariant
the symplectic metric Sζ tS = ζ . The matrix for ζ and the matrix representation for the Lie
algebra generator T are realized as (2n+ 2)× (2n+ 2) matrices as follows in the basis ordering
{Zα} = {Pi,Qi, E, T }:

ζ =
⎛
⎝ζ ◦ 0 0

0 0 −1
0 1 0

⎞
⎠ , T =

⎛
⎝0 0 0

0 0 1
0 0 0

⎞
⎠ . (B.12)

ζ ◦ is defined in (B.2).12 Using S−1 = −ζ tSζ , a general matrix element S and S−1 of Sp(2n+2)

have the form [16]

S =
⎛
⎝B b1 b2

c1 d1,1 d1,2

c2 d2,1 d2,2

⎞
⎠ , S−1 =

⎛
⎝ B−1 −ζ ◦ t c2 ζ ◦ t c1

t b2ζ
◦ d2,2 −d1,2

−t b1ζ
◦ −d2,1 d1,1

⎞
⎠

−1

. (B.13)

B is a 2n × 2n matrix, bα, cα ∈ R
2n and dα,β ∈ R, α, β = 1, 2. Imposing the condition

T = ST S−1 through matrix multiplication results in b1 = 0, d2,1 = 0 and d1,1 = ε, ε = ±1.
Finally, imposing the condition SS−1 = I2n+2 results in c2 = 0, d2,2 = ε and c1 = −εtb2ζ

◦A.
Therefore, elements of Sp(2n + 2) that leave T invariant have the form �◦ ∈ HSp(n) are
given above in (B.1). Similar arguments result in the invariance of tQiQi to reduce the form
further to �◦ ∈ Ha(n).

References

[1] Weinberg S 1995 The Quantum Theory of Fields vol 1 (Cambridge: Cambridge University Press)
[2] Low S G 2007 Relativity group for noninertial frames in Hamilton’s mechanics J. Math. Phys. 48 102901

(Preprint 0705.2030v1)
[3] Bargmann V 1954 On unitary ray representations of continuous groups Annal. Math. 59 1–46
[4] Mackey G W 1958 Unitary representations of group extensions: I Acta Math. 99 265–311
[5] Weyl H 1927 Quantenmechanik und Gruppentheorie Z. Phys. 46 1–46
[6] Dirac P 1930 Quantum Mechanics (Oxford: Clarendon)
[7] Folland G B 1989 Harmonic Analysis on Phase Space (Princeton, NJ: Princeton University Press)
[8] Gilmore R 1974 Lie Groups, Lie Algebras and Some of their Applications (New York: Wiley)
[9] Wolfram S 1996 The Mathematica Book (Cambridge: Cambridge University Press)

12 The relative sign of ζ ◦ and the 2 × 2 symplectic submatrix is a convention. An automorphism takes one form into
the other. Note that −de ∧ dt + dp ∧ dq = dt ∧ de + dp ∧ dq by the properties of the wedge product.

15

http://dx.doi.org/10.1063/1.2789553
http://www.arxiv.org/abs/0705.2030v1
http://dx.doi.org/10.2307/1969831
http://dx.doi.org/10.1007/BF02392428
http://dx.doi.org/10.1007/BF02055756


J. Phys. A: Math. Theor. 41 (2008) 304034 S G Low

[10] Born M 1949 Reciprocity theory of elementary particles Rev. Mod. Phys. 21 463–73
[11] Low S G 2002 Representations of the canonical group (the semi-direct product of the unitary and Weyl–

Heisenberg groups) acting as a dynamical group on noncommutative extended phase space J. Phys. A: Math.
Gen. 35 5711–29 (Preprint math-ph/0101024)

[12] Low S G 2007 Reciprocal relativity of noninertial frames: quantum mechanics J. Phys A: Math. Theor.
40 3999–4016 (Preprint math-ph/0606015)

[13] Azcarraga J A and Izquierdo J M 1998 Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics
(Cambridge: Cambridge University Press)

[14] Major M E 1977 The quantum mechanical representations of the anisotropic harmonic oscillator group J. Math.
Phys. 18 1938–43

[15] Hall B C 2000 Lie Groups, Lie Algebras, and Representations: An Elementary Introduction (Berlin: Springer)
[16] de Gosson M 2006 Symplectic Geometry and Quantum Mechanics (Berlin: Birkhauser)

16

http://dx.doi.org/10.1103/RevModPhys.21.463
http://dx.doi.org/10.1088/0305-4470/35/27/312
http://www.arxiv.org/abs/math-ph/0101024
http://dx.doi.org/10.1088/1751-8113/40/14/015
http://www.arxiv.org/abs/math-ph/0606015
http://dx.doi.org/10.1063/1.523168

	1. Introduction
	2. Projective representations of groups in quantum mechanics
	3. Quantum mechanics consistency condition with a relativity group
	4. Hamilton relativity group: invariance of time
	5. Central extension of the inhomogeneous Hamilton algebra
	5.1. Galilei group
	5.2. Central extension of the inhomogeneous Hamilton group

	6. Casimir invariants
	7. Discussion
	Acknowledgment
	Appendix A. Central extensions
	Appendix B. Matrix realizations of the groups
	B.1. Automorphisms of the Weyl--Heisenberg group
	B.2. Invariance of time

	References

